COMPARISON OF THE EFFECT OF HIGH IMPACT AEROBIC DANCE EXERCISE VERSUS ZUMBA ON INCREASING MAXIMUM OXYGEN VOLUME IN ADOLESCENT WOMEN

Puspodari1ABD, Hari Setijono1ABD, Oce Wiriawan1ABD, Poppy Elisano Arfanda1BC, Slamet Raharjo2BD, Nur Ahmad Muharram3CD, Wasis Himawanto3BC, M. Akbar Husein Allsabah3BDCD and Susilaturochman Hendrawan Koestanto4BD

1Universitas Negeri Surabaya
2Universitas Negeri Malang
3Universitas Nusantara PGRI Kediri
4Universitas Kahuripan Kediri

Authors’ Contribution: A – Study design; B – Data collection; C – Statistical analysis; D – Manuscript Preparation; E – Funds Collection

Corresponding Author: Puspodari, E-Mail: puspodari.20012@mhs.unesa.ac.id
Accepted for Publication: April 8, 2022
Published: June 25, 2022
DOI: 10.17309/tmfv.2022.2.03

Abstract
The study purpose was to compare high impact aerobic dance exercise versus Zumba to increase Maximum Oxygen Volume (VO2max) in adolescent women.

Materials and methods. This research is quasi-experimental with a two-group pretest-posttest design research design. A total of 30 adolescent women from the Student Activity Unit (UKM) aerobic gymnastics at Universitas Nusantara PGRI Kediri, aged 18-24 years, body mass index (BMI) 18.5-24.9 kg/m2, normal blood pressure participated in the study. Respondents were randomly divided into two groups, namely ZADE (n = 15, Zumba aerobic dance exercise) and HADE (n = 15, High impact aerobic dance exercise). HADE and ZADE were conducted for 30 minutes/session, with an intensity of ≥ 85% HRmax, as often as 3 times/week, and both types of training were performed for 8 weeks. Measurements of VO2max, oxygen saturation (SpO2), and heart rate at rest (HRrest) were pre-test and 1×24 hours post-test after 8 weeks of training intervention. Statistical analysis used Paired Sample t-Test with a significance level of 5%.

Results. Paired Sample T-Test results showed significant differences in average VO2max, SpO2, HRrest between pretest vs. posttest in both groups (p ≤ 0.001).

Conclusions. Based on the study results, we have concluded that both HADE and ZADE increase VO2max, SpO2, and decrease HRrest. But HADE is more effective in increasing VO2max, SpO2, and lowering HRrest than ZADE in adolescent women.

Keywords: aerobic dance, exercise, high impact, maximum oxygen volume, zumba.

Introduction
A person who experiences fatigue while carrying out daily activities can be caused by a lack of physical activity, resulting in a decrease in fitness levels. Physical activity has benefits in health development and positively impacts challenging things, such as exploration, skills building, and social integration (Barber & Weichold, 2007). Aerobic fitness is the maximum capacity when inhaling, channeling, and using oxygen. Aerobic capacity is a major component of the element of success in sporting achievement. Maximum oxygen volume (VO2max) is the best indicator of an athlete’s physical capacity (Rankovic et al., 2010). VO2max is the maximum amount of oxygen that can be consumed during intense physical activity until fatigue occurs. Physical freshness is a person’s ability to perform physical activities that require strength, endurance, and flexibility. The element
that affects physical health is cardiorespiratory endurance (Kusnanik et al., 2019). During exercise there is an increase in motor units, increased strength, and frequency of muscle contractions, this is important because it shows changes in muscle function during development towards exercise with intensity approaching VO\textsubscript{2}\text{max} (Robergs, 2001).

Endurance is needed for daily activities, with good endurance then daily activities will not experience fatigue that is so heavy. Endurance is strongly related to breathing, heart, and circulatory (Irwandi & Aprizal, 2016). Physical freshness is an interpretation of the heart's endurance ability to maintain maximum body performance without fatigue for a while. Parameters as a marker of a person's physical fitness can be assessed from high VO\textsubscript{2}\text{max} levels (Widodo et al., 2021). VO\textsubscript{2}\text{max} is the maximum amount of oxygen that can be consumed during intense physical activity until fatigue occurs. A person with a good level of VO\textsubscript{2}\text{max} means having good physical fitness as well. Physical fitness gives a person the ability to do productive daily work without excessive fatigue. Low cardiorespiratory fitness can increase the risk of death from heart disease and hypertension (Irrianto & Hasnah, 2018).

Aerobic gymnastics is very popular in various parts of the world (Schroeder, 2017). Aerobic exercise can be done anywhere and anytime. Aerobic gymnastics in addition to being able to train endurance is also able to increase motivation so that individuals who do it are more excited. Aerobic exercise can also help break away from the routine (Wang & Wu, 2016). Aerobic exercise performed 30–45 minutes, 3x/week for 10 weeks significantly increases physical work capacity and cardiovascular function (Dowdy et al., 2015). Aerobic gymnastics is one of the most common adult fitness activities performed (Aleksandra et al., 2016). Based on its intensity, aerobic gymnastics is divided into three types: low impact, high impact, and mixed impact. High impact aerobic gymnastics has benefits to help boost the immune system, heart, and blood circulation. High impact aerobic exercise is an aerobic exercise with foot movements that do not touch the floor (Suminar et al., 2018). In addition to aerobic dance, doing zumba dance activities is also able to increase flexibility, respiratory endurance, cardiovascular endurance, and abdominal strength. Zumba is also a rhythmic aerobic fitness program. Zumba involves dance and all the aerobic components (Bandopadhyay, 2018). Zumba is a new type of dance practice, inspired by Latin American music and Latin American dance. This exercise combines the basics of merengue dance, salsa, samba, cumbia, reggaeton, and other Latin American dances, using basic aerobic steps, but also has the advantages of other dance variations such as hip hop, belly dance, India, African dance, etc. (Perez, 2009).

High blood pressure is one of the riskiest factors for cardiovascular disease and is one of eight causes of death worldwide (Punia et al., 2016). Hypertension is a multifactorial chronic disease that affects more than one billion adults worldwide (Mills, 2016). This is considered an important cardiovascular risk factor, as it is closely related to the occurrence of cardiovascular disease (Rapsomaniki et al., 2014) and the risk of premature death (Pan, 2020). In addition to treatment, lifestyle changes are very important in the treatment of hypertension, in addition to regular physical exercise also includes the prevention of hypertension (Whelton et al., 2020). Variable variations of exercise can be an important strategy in maintaining health (de Barcelos et al., 2022). One way to assess a person's cardiorespiratory endurance is to measure VO\textsubscript{2}\text{max} values to measure the capacity of the heart, lungs, and blood to hold oxygen to working muscles and measure muscle oxygen use (Nugraheni et al., 2017).

The most common measurement for VO\textsubscript{2}\text{max} prediction is the Multi-Stage 20-m Shuttle Run Fitness Test. This test is widely used by sports scientists, teachers, trainers, and fitness advisors because it requires limited equipment, is relatively easy to perform, and is suitable for the assessment of a large number of subjects. As is the case with all tests and measurements used to assess the physical fitness component, critical questions must be asked regarding the repetition and validity of MFT (Cooper et al., 2005). Maximal oxygen absorption is assessed by establishing an oxygen recovery curve based on the Multi-Stage 20-m Shuttle Run Fitness Test (Paradisis et al., 2014).

The goal of the study was to compare high-impact aerobic dance exercise versus Zumba aerobic dance exercise against the increase in VO\textsubscript{2}\text{max} in adolescent girls. Increased VO\textsubscript{2}\text{max} can be useful in health, such as the diagnosis of potential heart disease in the elderly to measuring peak performance in elite athletes (Snarr et al., 2018).

Materials and Methods

Study participants

This research is Quasi-Experimental with a two-group pretest-posttest design. A total of 30 adolescent women from the Student Activity Unit (UKM) aerobic gymnastics at Universitas Nusantara PGRI Kediri, aged 18-24 years, body mass index (BMI) 18.5-24.9 kg/m², normal blood pressure participated in the study. Randomly respondents were divided into two groups, namely ZADE (n = 15, Zumba aerobic dance exercise), HADE (n = 15, High impact aerobic dance exercise). Before participating in the research, all respondents obtain information both orally and in writing about the research to be carried out. All respondents expressed willingness to participate in the research by signing informed consent. All procedures carried out in our research have complied with the Helsinki World Medical Association Declaration on the ethical conduct of research involving human subjects.

Study organization

The high-impact aerobic dance exercise and Zumba program are applied and supervised by professional officers from the Faculty of Health and Science, Universitas Nusantara PGRI Kediri. High impact aerobic dance exercise and Zumba for 30 minutes/training session with intensity ≥ 85% HRmax with a frequency of 3x/week for 8 weeks. Monitoring heart rate during high impact aerobic dance exercise and Zumba using polar heart rate monitor (Polar H7 Bluetooth Heart Rate Sensor & Fitness Tracker, Inc., USA).

Data collection for body height (BH) measurement using a Stadiometer (Portable Seca® Stadiometer, North America). Body weight (BW) is measured using digital scales (OMRON HN-246, Osaka, Japan), BMI is calculated using BW (kg) divided by BH (m²). Blood pressure measurement using digital meter tension (OMRON Model Deluxe HEM-8712 BASIC, Japan) on the non-dominant arm 3 times in a
row with a break interval of 2 minutes between the two measurements then take the average value of the three measurements. Measurements of heart rate rest (HR-rest) and oxygen saturation (SpO₂) using the Beurer Pulse Oximeter PO-30. Measurement of maximum oxygen volume (VO₂-max) using Multi-Stage 20-m Shuttle Run Fitness Test (Paradisis et al., 2014). VO₂-max, SpO₂, and HR-rest measurements were pre-test and 1×24 hours post-test during 8 weeks of high-impact aerobic dance exercise and Zumba interventions.

Statistical analysis

The technique of data analysis used the Statistical Package for Social Science (SPSS) version 21 software. The Shapiro-Wilk test was used for normality test analysis with a significant level (p ≥ 0.05). Paired Sample t-Test was used to compare the mean VO₂-max, SpO₂, and HR-rest between pretest vs. posttest, while the Independent Samples t-Test was used to compare the mean VO₂-max, SpO₂, and HR-rest between ZADE vs. HADE at the pretest, posttest, and delta observation points. All statistical analyses used a significant level (p ≤ 0.05).

Results

Preliminary measurement results of the characteristic parameters of study respondents which include age, body height, body weight, body mass index, blood pressure are shown in Table 1 below.

Based on Table 1, the results of the Independent Samples t-Test analysis showed that there was no significant difference in the average parameter characteristics of study respondents between ZADE vs. HADE (p ≥ 0.05). The results of the analysis of the average maximum oxygen volume (VO₂-max), oxygen saturation (SpO₂), heart rate rest (HR-rest) between pretest vs. posttest on ZADE and HADE can be seen in Figure 1.

Based on Figure 1 it is seen that there is an average change in VO₂-max, SpO₂, HR-rest between pretest vs. posttest on ZADE and HADE. Paired Sample T-Test results showed significant differences in average VO₂-max, SpO₂, HR-rest between pretest vs. posttest in both groups (p ≤ 0.001). The results of the analysis of the average VO₂-max, SpO₂, HR-rest between ZADE vs. HADE at the pretest, posttest, delta observation points can be seen in Table 2.

Table 1. Initial measurement results of characteristic parameters of study respondents

<table>
<thead>
<tr>
<th>No</th>
<th>Parameter</th>
<th>ZADE (n = 15)</th>
<th>HADE (n = 15)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Age (years)</td>
<td>20.73±1.58</td>
<td>20.60±1.59</td>
<td>0.820</td>
</tr>
<tr>
<td>2</td>
<td>Body height (m)</td>
<td>1.55±0.04</td>
<td>1.54±0.06</td>
<td>0.662</td>
</tr>
<tr>
<td>3</td>
<td>Body weight (kg)</td>
<td>55.40±4.75</td>
<td>54.33±8.52</td>
<td>0.675</td>
</tr>
<tr>
<td>4</td>
<td>Body mass index (kg/m²)</td>
<td>23.11±2.15</td>
<td>22.78±2.60</td>
<td>0.710</td>
</tr>
<tr>
<td>5</td>
<td>Systolic blood pressure (mmHg)</td>
<td>117.87±3.02</td>
<td>116.60±2.56</td>
<td>0.225</td>
</tr>
<tr>
<td>6</td>
<td>Diastolic blood pressure (mmHg)</td>
<td>78.87±3.76</td>
<td>77.40±3.78</td>
<td>0.295</td>
</tr>
</tbody>
</table>

Description: ZADE: Zumba aerobic dance exercise, HADE: High impact aerobic dance exercise. p-value is obtained using the Independent Samples t-Test. Data presented with Mean ± SD.

Table 2. Average analysis results VO₂-max, SpO₂, HR-rest between ZADE vs. HADE

<table>
<thead>
<tr>
<th>No</th>
<th>Observation Point</th>
<th>ZADE (n = 15)</th>
<th>HADE (n = 15)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VO₂-max (mL/kg/min)</td>
<td>26.37±2.72</td>
<td>26.23±3.57</td>
<td>0.905</td>
</tr>
<tr>
<td></td>
<td>Pretest</td>
<td>30.49±2.31</td>
<td>32.91±3.31*</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>Delta (Post – Pre)</td>
<td>4.12±2.02</td>
<td>6.67±1.25**</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>SpO₂ (%)</td>
<td>96.60±0.91</td>
<td>96.80±0.77</td>
<td>0.522</td>
</tr>
<tr>
<td></td>
<td>Pretest</td>
<td>98.00±0.93</td>
<td>98.87±0.92*</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>Delta (Post – Pre)</td>
<td>1.40±0.74</td>
<td>2.07±0.88*</td>
<td>0.033</td>
</tr>
<tr>
<td>3</td>
<td>HR-rest (bpm)</td>
<td>79.07±4.13</td>
<td>79.60±3.64</td>
<td>0.710</td>
</tr>
<tr>
<td></td>
<td>Pretest</td>
<td>76.40±4.07</td>
<td>73.07±2.81*</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>Delta (Post – Pre)</td>
<td>–2.67±1.05</td>
<td>–6.53±2.67**</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Description: ZADE: Zumba aerobic dance exercise, HADE: High impact aerobic dance exercise. *Significant vs. ZADE (p ≤ 0.05). **Significant vs. ZADE (p ≤ 0.001). p-value is obtained using the Independent Samples t-Test. Data presented with Mean ± SD.
Aerobic dance exercise has become a lifestyle, this is because aerobic exercise is one form of physical activity that can improve health and please many people around the world (Vijayalakshmi et al., 2021). Currently, aerobic exercise can improve heart health (Donath et al., 2014), overall muscle strength, balance, and coordination, and reduce depression (Santos-Silva et al., 2021). Our research aims to gain insight into the comparison of the effects of high-impact aerobic dance exercise (HADE) and Zumba aerobic dance exercise (ZADE) to maximal oxygen volume (VO\(_{2}\)max), heart rate rest (HR-rest), oxygen saturation (SpO\(_2\)). Based on the results of the study showed that there was a significant difference in the average increase in VO\(_{2}\)max and SpO\(_2\) between pre-test vs. post-test on (HADE and ZADE). While the average HR-rest between pretest vs. posttest on HADE and ZADE decreased significantly (Figure 1). These results are in line with the results of research conducted by Suminari et al. (2018) reported that high-impact aerobics exercise, and Zumba fitness increase VO\(_{2}\)max and decrease heart rate recovery. Research of Nandhini (2013) also reported an increase in VO\(_{2}\)max after aerobic dance training. Samba dance performed with moderate to heavy intensity improves cardiorespiratory fitness (Santos-Silva et al., 2021). Likewise, Zumba training (group fitness based on salsa and aerobics) improves aerobic fitness (Donath et al., 2014). The 8-week Low Impact Aerobic Dance Program significantly improved VO\(_{2}\)max (Olufemi & Adaeze, 2012). The increase in VO\(_{2}\)max is likely due to high-impact aerobic dance exercise increasing Fast-twitch muscle fibers, thus causing an increase in muscle contractions faster than Zumba aerobic dance exercise. Muscle fibers are designed to produce powerful explosive power with the use of more energy sources. Fast-twitch muscle fibers require more energy than slow-twitch muscle fibers, so the recovery process after aerobic dance exercise is more effective (Mallesh et al., 2017).

Heart rate is one of the foundations in determining the dose of physical activity. Heart rate can describe a person’s intensity in doing a physical activity so that it can show how hard the heart works. A person who has a normal pulse and tends to be low can have good VO\(_{2}\)max and will not easily experience fatigue while doing aerobic exercise. This is supported by our results which showed an increase in VO\(_{2}\)max and a decrease in HR-rest after 8 weeks of high-impact aerobic dance exercise and Zumba. High levels of VO\(_{2}\)max affect the body’s ability to recover optimally. Maximum oxygen volume (VO\(_{2}\)max) can provide important information about an individual’s capacity in the long-term energy system and maximum oxygen consumption can be increased with long-term aerobic exercise (Bandopadhyay, 2018). Aerobic exercise has been shown to lower the risk of cardiovascular disease in women with sedentary lifestyles characterized by improvements in systolic and diastolic blood pressure as well as increasing high-density lipoprotein (HDL) and lowering total cholesterol (TC), low-density lipoprotein (LDL), and triglyceride (TG) (Imamoğlu et al., 2017).

Endurance is needed for daily activities, with good endurance then daily activities will not experience fatigue that is so heavy. Endurance is strongly related to breathing, heart, and circulatory (Irwandi & Aprizalni, 2016). Physical freshness is an interpretation of the heart’s endurance ability to maintain maximum body performance without experiencing fatigue for a period of time. The parameter that can be used as a marker of a person’s physical fitness level is VO\(_{2}\)max (Widodo et al., 2021). VO\(_{2}\)max is the maximum amount of oxygen that can be consumed during intense physical activity until fatigue occurs. A person with...
a good level of VO\textsubscript{max} means also having a good level of physical fitness. Physical fitness gives a person the ability to do productive daily work without excessive fatigue. A person with a low level of physical fitness can increase the risk of death from heart disease and hypertension (Irianto & Hasnah, 2018). Based on the results showed that Zumba aerobic dance exercise and high impact aerobic dance exercise conducted 30 minutes/training sessions with a frequency of 3x/week for 8 weeks increase VO\textsubscript{max}, but high impact aerobic dance exercise is more effective in increasing VO\textsubscript{max} than Zumba aerobic dance exercise (Table 2). Therefore, high-impact aerobic dance exercise can be used as a method in improving physical fitness, to reduce the risk of heart disease and hypertension.

Conclusion

Based on the results of the study concluded that Zumba aerobic dance exercise and high impact aerobic dance exercise conducted 30 minutes/training session with a frequency of 3x/week for 8 weeks increase VO\textsubscript{max}, SpO\textsubscript{2}, and decrease HR-rest. But high impact aerobic dance exercise is more effective in increasing VO\textsubscript{max}, SpO\textsubscript{2}, and lowering HR rest than Zumba aerobic dance exercise in adolescent women.

Acknowledgement

We thank the Rector of Surabaya State University Prof. Dr. Nurhasan, M.Kes, Rector of Universitas Nusantara PGRI Kediri Dr. Zenaal Afandi, M.Pd, Dean of the Faculty of Health and Sciences, Universitas Nusantara PGRI Kediri Dr. Sulistiono, M.Si, Chairperson of the Physical Education Study Program of Universitas Nusantara PGRI Kediri Dr. Slamet Junaidi, M.Pd, who has provided support in the implementation of this research. We would also like to thank all the respondents who participated in this study.

Conflict of interest

All authors declare no conflict of interest.

References

ПОРИВНЯННЯ ВПЛИВУ ВПРАВ ІЗ ВИСОКОУДАРНОЇ ТАНЦЮВАЛЬНОЇ АЕРОБІКИ ТА ЗУМБИ НА ПІДВИЩЕННЯ ПОКАЗНИКА МАКСИМАЛЬНОГО СПОЖИВАННЯ КИСНЮ В ЮНІХ ЖІНОК

Пупсодари (Puspodari), Харі Сетіжоног (Harji Setijono), Оце Віріаван (Oce Wiriawan), Нур Ахмад Мухаррам (Nur Ahmad Muharram), Васіс Хімаванто (Vasis Himawanto), М. Акбар (M. Akbar) Husein Allsabah, Сусілатурохман Хендраван Коестант (Susilaturohman Hendrawan Koestanto)

1 Державний університет Сурабаї
2 Державний університет Маланг
3 Кедірійський університет Нусантара Асоціації вчителів Індонезії
4 Університет Кахуріпан в Кедірі

Авторський вклад: A – дизайн дослідження; B – збір даних; C – статаналіз; D – підготовка рукопису; E – збір коштів

Реферат: Стаття: 7 с., 2 табл., 1 рис., 32 джерела.

Метою дослідження було порівняння впливу на показники максимального споживання кисню (VO₂max) у чоловіків високоударної танцювальної аеробіки та зумбі.

Матеріали та методи. Це дослідження є квазіекспериментальним, при цьому план проведення дослідження включав попереднє та заключне дослідження в рамках двох експериментальних груп. У дослідженнях брали участь 30 чоловіків і 30 жінок, які навчаються в університеті Нусантара Асоціації вчителів Індонезії. Протягом 8 тижнів учасниці проведення тренувань з участь у вправах з високоударної танцювальної аеробіки, високоударної танцювальної аеробіки зумби, HADE та ZADE у групах Nunasanta 1ABD (p ≤ 0,001).

Висновки. На підставі одержаних результатів дослідження ми прийняли, що вправи з високоударної танцювальної аеробіки, високоударної танцювальної аеробіки зумби, HADE та ZADE підвищують показники максимального споживання кисню (VO₂max), насиченості крові киснем (SpO₂) та знижують показник ЧСС у стані спокою (HRrest). Проте вправи з HADE ефективніші для підвищення показників VO₂max, SpO₂ та зниження показника HRrest у чоловіків.

Ключові слова: високоударна аеробіка, вправа, хвилинне споживання кисню, зумба.

Information about the authors:

Puspodari: https://orcid.org/0000-0002-1753-4127; Doctoral Program of Sport Science, Faculty of Sport Science, Universitas Negeri Surabaya, Surabaya, East Java 60213, Indonesia.
Hari Setijono: https://orcid.org/0000-0001-8305-4933; Department of Sport Science, Faculty of Sport Science, Universitas Negeri Surabaya, Surabaya, East Java 60213, Indonesia.
Oce Wiriawan: https://orcid.org/0000-0003-1830-9519; Department of Sport Coaching Education, Faculty of Sport Science, Universitas Negeri Surabaya, Surabaya, East Java 60213, Indonesia.
Poppy Elisana Arfanda: https://orcid.org/0000-0002-8191-6912; Doctoral Program of Sport Science, Faculty of Sport Science, Universitas Negeri Surabaya, Surabaya, East Java 60213, Indonesia.
Nur Ahmad Muharram: https://orcid.org/0000-0002-8741-0664; Faculty of Health and Science, Universitas Nusantara PGRI Kediri, Ahmad Dahlano No. 76 Street, Kediri, East Java 61142, Indonesia.
Wasis Himawanto: https://orcid.org/0000-0001-5139-2452; Study Program of Sports Teacher, Postgraduate Program, Universitas Nusantara PGRI Kediri, Ahmad Dahlano No. 76 Street, Kediri, East Java 61412, Indonesia.
M. Akbar Husein Allsabah: https://orcid.org/0000-0001-9639-2149; Faculty of Health and Science, Universitas Nusantara PGRI Kediri, Ahmad Dahlano No. 76 Street, Kediri, East Java 61412, Indonesia.
Susilaturohman Hendrawan Koestanto: https://orcid.org/0000-0002-8064-015X; Study Program of Physical Education, Health, and Recreation, Universitas Kahuripan Kediri, Ahmad Dahlano No. 76 Street, Kediri, East Java 61412, Indonesia.

Received: 14.03.2022. Accepted: 8.04.2022. Published: 25.06.2022

This work is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).